Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Earths Future ; 11(5), 2023.
Article in English | Web of Science | ID: covidwho-20236784

ABSTRACT

COVID-19 pandemic responses affected atmospheric composition and climate. These effects depend on the background emissions, climate, and season in which they occur. Although using multiple scenarios is common in explorations of long-term climate change, they are rarely used to explore atmospheric composition or climate changes in response to transient emission perturbations on the scale of COVID-19 lockdowns. We used the ModelE Earth system model to evaluate how atmospheric and climate impacts depend on the decade and season in which lockdowns occurred. Global COVID-19-related anomalies in aerosols and trace gases differed by up to an order of magnitude or more when comparing lockdowns in 1980, 2008, 2020, and 2051. Regional atmospheric composition anomalies tended to be largest when emissions were near a historical peak: 1980 in Europe and temperate North America, 2008 or 2020 in eastern Asia, and 2051 in south Asia. Regional aerosol direct effect anomalies were almost always less than 0.1 W m( -2) during the first pandemic year, but over 0.1 W m (-2) in Europe and exceeded 0.2 W m(-2) in Europe and temperate North America in 1980, generally changing in tandem with regional emissions. In contrast, direct effect anomalies in Asia were positive in 1980 and negative in 2008, suggesting they may be primarily determined by exogenous emission anomalies. Shifting COVID-19 onset in 2020 by 3, 6, or 9 months also altered atmospheric composition on the order of 2%-25% globally. In all scenarios, changes in surface temperature or precipitation appeared unrelated to local atmospheric compositional changes.

2.
Sustain Cities Soc ; 70: 102887, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1157725

ABSTRACT

The fast spread of SARS-CoV-2 presented a worldwide challenge to public health, economy, and educational system, affecting wellbeing of human society. With high transmission rates, there are increasing evidences of COVID-19 spread via bioaerosols from an infected person. The current review was conducted to examine airborne pollen impact on COVID-19 transmission and to identify the major gaps for post-pandemic research. The study used all key terms to identify revenant literature and observation were collated for the current research. Based on existing literature, there is a potential association between pollen bioaerosols and COVID-19. There are few studies focusing the impact of airborne pollen on SARS-CoV-2, which could be useful to advance future research. Allergic rhinitis and asthma patients were found to have pre-modified immune activation, which could help to provide protection against COVID-19. However, does airborne pollen acts as a potent carrier for SARS-CoV-2 transport, dispersal and its proliferation still require multidisciplinary research. Further, a clear conclusion cannot be drawn due to limited evidence and hence more research is needed to show how pollen bioaerosols could affect virus survivals. The small but growing literature review focuses on searching for every possible answer to provide additional security layers to overcome near future corona-like infectious diseases.

3.
Geophys Res Lett ; 48(8): e2020GL091883, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1124655

ABSTRACT

Many nations responded to the corona virus disease-2019 (COVID-19) pandemic by restricting travel and other activities during 2020, resulting in temporarily reduced emissions of CO2, other greenhouse gases and ozone and aerosol precursors. We present the initial results from a coordinated Intercomparison, CovidMIP, of Earth system model simulations which assess the impact on climate of these emissions reductions. 12 models performed multiple initial-condition ensembles to produce over 300 simulations spanning both initial condition and model structural uncertainty. We find model consensus on reduced aerosol amounts (particularly over southern and eastern Asia) and associated increases in surface shortwave radiation levels. However, any impact on near-surface temperature or rainfall during 2020-2024 is extremely small and is not detectable in this initial analysis. Regional analyses on a finer scale, and closer attention to extremes (especially linked to changes in atmospheric composition and air quality) are required to test the impact of COVID-19-related emission reductions on near-term climate.

SELECTION OF CITATIONS
SEARCH DETAIL